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Abstract

Building from a foundation of microstructural characterization, mechanical testing, 3D statisti-

cally equivalent microstructural volume elements (SEMVEs), and image-based microstructural

modeling, this paper develops an effective crystal plasticity model with porosity evolution for

additively manufactured Ti-6Al-4V alloys. Their microstructure is characterized by a complex

Widmanstätten morphology containing 12 α lath variants. In this paper, the morphology is

parametrized by statistically equivalent ellipsoids, enabling a parametric representation of the α

laths in the models. An effective crystal plasticity framework with the parametric representation

of the α lath morphology is achieved by identifying the crystallographic relationship of the α

laths in relation to the parent β grains from which they have nucleated and developing methods

to incorporate a statistical representation of HCP α laths in β grains. The constitutive model

for β grains statistically accounts for the size, shape, orientation, and crystallography of all 12 α

lath variants. An important contribution is the integration of porosity evolution with the crystal

plasticity model. The model is calibrated and satisfactorily validated with results from experi-

ments on additively manufactured Ti-6Al-4V alloys with and without heat treatment. The model

can yield important insights into the underlying physics of this relatively new class of materials.
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1. Introduction

Additive manufacturing (AM) has brought dramatic changes to the manufacturing industry

through near-net-shape production of complex, customized parts and structures. Capitalizing

on the use of layer-by-layer material addition technology, the AM processes are able to fabricate

finished products conforming to 3D computerized designs [1]. Powder-bed AM techniques, such

as electron beam melting (EBM) and laser powder bed fusion (LPBF), involving layer-wise melt-

ing of powder have shown great promise in manufacturing metallic components, e.g. of titanium

and aluminum alloys [2, 3]. Despite the significant promise, the qualification and certification of

AM processed materials are often impeded by inconsistencies in the overall mechanical behavior

and extreme properties [4, 5, 6], commonly attributed to subtle, yet characteristic variations in

the microstructural morphology like grain size, crystallographic texture, and defect structures

[7, 8, 9].

Among various metallic materials, additively manufactured Ti-6Al-4V promises to be a trans-

formational material in high-performance, mission-critical components due to its impressive

strength and a large design envelope [10]. These materials exhibit a complex, Widmanstätten

or basket-weave microstructure [11], with over 98% hexagonal close-packed (HCP) α phase that

forms due to the high cooling rates in the AM process. Following solidification after energy

injection in the EBM process, the material initially exists in the body-centered cubic (BCC) β

phase. However, upon the cooling below 950◦C, the transus temperature of Ti-6Al-4V, α laths

begin to precipitate and form individual α colonies with one of 12 unique Burgers relationships

with respect to the parent β grain [12, 13]. The highly localized heating source in the electron

beam and laser processes [14, 15] results in a far more rapid cooling rate of the molten material

than for other bulk processes. With the high cooling rate, more nucleation sites are formed

resulting in smaller and more intricate α laths. These microstructures also contain defects in-

trinsic to the AM processes in the form of void and porosity distribution, due to either lack of

fusion or key-holing events [16, 17, 18]. An understanding of the interplay between the complex

Widmanstätten microstructure of Ti-6Al-4V and the porosity defects [19, 20, 21, 22] is important
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for capturing the overall mechanical and failure properties of these additively manufactured ma-

terials. Robust micromechanical models that can effectively couple the detailed effects of these

aspects of the microstructure are of high relevance in the effective design and manufacture of

these materials.

There is an extensive literature on image-based modeling approaches for dual-phase α/β

Ti-6Al-4V [23, 24, 25, 26, 27, 28, 29, 30]. For example, physics-based micromechanical models

of dwell fatigue due to load shedding and plastic strain localization in temperature and rate-

sensitive materials have been proposed for Ti alloys in [31, 32, 33, 34]. However, there is a

paucity of modeling-based studies on Widmanstätten microstructures of AM-processed Ti-6Al-

4V materials [35]. This in part is due to the difficulty of statistical characterization of individual

α laths, interlocked in a basket-weave pattern as shown in Figure 1. A few studies with this

material include crystal plasticity modeling with grain-level residual stresses [36] and crystal

plasticity model-based prediction of tensile properties [37]. Image-based micromechanical models

need the creation of virtual microstructures from experimental electron backscattered diffraction

(EBSD) and/or scanning electron microscopy (SEM) scans, e.g. the statistically equivalent mi-

crostructural volume elements (SEMVEs) [38, 39]. The intricate, interwoven Widmanstätten

microstructures formed by the AM processes are difficult to characterize without high-resolution

3D scans, such as dual-beam focused ion beam (FIB)-based EBSD or SEM scans [40]. 2D sur-

face scans lack the detailed information needed for creating representative high-resolution 3D

virtual microstructures. Alternative methods, such as the phase-field approach of microstruc-

ture evolution from β to α phase [41, 42, 43, 44], while promising, are computationally expensive.

The present study is aimed at the development of a micromechanical model for deformation

analysis of AM-based Ti-6Al-4V with Widmanstätten microstructures. The grain microstruc-

ture contains up to 12 unique HCP α laths with ≥ 98% volume fraction, each with its own

crystallographic orientation and slip systems. Explicit representation of each of the 12 α lath

variants in FE models of the microstructural grains is computationally prohibitive due to their
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extremely small scale. It will require an enormously large number of elements to represent in-

dividual phases. In lieu of explicit representation, the α laths are represented by a statistical

representation of the morphology (e.g. volume fraction, size, and shape) and crystallography of

the α laths in the parent grain, matching distributions observed in the EBSD scans. Statistically

equivalent microstructural volume elements or SEMVEs are generated by equating the statistics

of various morphological and crystallographic descriptors of the EBSD scans of the microstruc-

ture with those for the model [38, 39]. The SEMVE is a microstructural domain for which

statistical distribution functions of morphological parameters converge to those of the experi-

mental microstructure. Unlike representative volume elements (RVEs) that are conventionally

subjected to periodic boundary conditions, boundary conditions on the SEMVE resemble the

experimental loading conditions for generating overall response functions of the specimen. For

the problems considered in this study, the use of RVEs with periodic boundary conditions is

deemed inappropriate due to the localization (non-periodic) deformation patters observed in the

experimental specimen.

The crystallographic orientations of the α laths are functions of the crystallography of the

parent β grain. In this approach, the effects of each of the 12 variants are incorporated into a con-

stitutive framework of an equivalent crystal. This concept follows the equivalent crystal model

that has been developed in [45] for transformed β colonies in the Ti-6242 alloy microstructure,

consisting of alternating parallel α and β laths. The equivalent crystal consists of an assemblage

of 30 HCP and 48 BCC slip systems that are oriented in accordance with the Burgers rela-

tion. Assuming a Taylor model, the stress tensor in the equivalent crystal is determined using

the rule of mixtures, where a weighted averaging of the α and β phase stresses is conducted,

with phase volume fractions as weights. In the present study, the equivalent grain is developed

for the 12 unique α laths and incorporated into an effective constitutive relation. Voids in the

model microstructure are assumed to manifest in the form of porosity distributions. The ef-

fect of porosity distributions in the equivalent grain is accommodated through a porous crystal

plasticity constitutive model that has been developed in [46] to capture the effect of evolution
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of porosity (void volume fraction), crystallographic orientation, void growth, stress triaxiality,

and Lode parameters. This porosity evolution and associated crystal plasticity model in [46] is

adopted in this work for simulating Widmanstätten microstructures in additively manufactured

Ti-6Al-4V. This combination of the microstructure and defect representation provides a strong

and viable computational model to interrogate and develop microstructure-response relations for

this additively manufactured Ti alloy.

(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Backscattered electron (BSE) image, (b) image quality map of electron backscattered diffraction
(EBSD) scan, and (c) feature ID map of EBSD scan of as-built additively manufactured Ti-6Al-4V microstructure,
(a unique color is used represent each individual feature, corresponding to α grains); (d) BSE image, (e) image
quality map of EBSD scan, and (f) feature ID map of EBSD scan of a HIP-treated Ti-6Al-4V microstructure (a
unique color is used represent each individual feature, corresponding to α grains).

This paper begins with a description of the material, mechanical testing regimens, and the

image acquisition methods used for microstructure statistics gathering in Section 2. Section 3

discusses the cleanup procedures for the microstructural images, the methodologies for determin-

ing the parent β grains from images containing only α laths, the construction of 3D statistically
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equivalent microstructural volume element of parent β microstructures, as well as the genera-

tion of statistically equivalent α phase inputs for the effective crystal plasticity model. Section

4 provides a comprehensive overview of the porous crystal plasticity formulation derived for

the equivalent crystal model. Section 5 describes the calibration of the constitutive parameters

and the subsequent validation with results from mechanical tests. This is supplemented with

additional validation for a hot isostatic pressing (HIP)-treated material that contains minimal

porosity. Finally, the paper concludes with a summary in Section 7

2. Summary of the Material, Manufacturing Process, and Testing

2.1. Additively Manufactured Ti-6Al-4V Alloy

Additively manufactured Ti-6Al-4V is nominally an α/β Ti alloy, with small amounts of

vanadium, aluminum, and other elements. The weight fractions of the experimental alloy in

this work are 5.82%Al, 4%V, 0.2%Fe, 0.1%O, with trace amounts of C, H, and N, the balance

being Ti. The EBSD scans of the Ti-6Al-4V microstructure contain ≥ 98% α phase by area,

demonstrating that the deformation mechanisms are dominated by dislocation glide on HCP slip

systems. Accordingly, the model accounts for deformation of the α phase in the Widmanstätten

microstructure that is characterized by interlocking plates, forming α lamellae. The α laths

precipitate out of the β phase, as the material cools below the β transus temperature. The α

laths are approximately ellipsoidal in nature and are related to the parent β grain via a Burgers

relationship (0001)α||(101)β and [112̄0]α||[1̄11]β, discussed in [47]. The crystallographic rotation

matrix D that describes the rotation from a vector in the β crystal coordinate system to the α

phase coordinate system is given in [48] as:

D =
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However, due to the symmetry of the BCC crystal, there are 12 symmetry operators represented

by a matrix Sβ
i , which can generate unique variants [41, 48]. Defining the rotation matrix from the
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reference coordinates to the crystallographic coordinates of the parent β grain as G, the rotation

matrix P i from the reference orientation to the i-th variant’s α crystallographic orientation is

expressed as:

P i = DSβ
i G (2)

A derivation of the relationship between α and parent β phases can be found in [48]. An exhaus-

tive list of the symmetries, resulting in varying Sβ
i is provided in Table 1.

Each of the 12 variants represents a unique way to attach the HCP lattice onto a given BCC

orientation. Table 1 provides the rotations of these symmetries that give rise to the variants in

both the matrix forms and in quaternions. Quaternions, detailed in section 3.2, are an alternate

approach to representing rotations. The table also shows the unique Burgers relationship between

the α and the β phases. A similar table without the quaternion representation is given in [41].

2.2. Material Build Parameters in the Electron Beam Melting Process

The Ti-6Al-4V specimens are fabricated using electron beam melting powder-bed fusion

(EBM-PBF) in an Arcam A1 machine (software version 3.2.132) 1, schematically shown in figure

2. The accelerating voltage is 60 kV, and the layer thickness is 50 µm. The standard Arcam

Ti-6Al-4V gas-atomized powder used, has a specified particle size range of approximately 40 µm

to 100 µm, and an average diameter of approximately 70 µm. Parts are grouped into a single

melt model such that the EBM scan length is approximately 70 mm in each of the in-plane

directions.

One subgroup of the samples is subjected to a hot isostatic pressing (HIP) treatment below

the β transus at 900◦C for two hours in an inert Ar environment at a pressure of 100 MPa.

Heating and cooling rates are carried out at 12 ◦C/min, a process that is primarily used to elim-

1Certain commercial software, equipment, instruments or materials are identified in this paper in order to
specify the experimental procedure adequately. Such identification is not intended to imply recommendation
or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the
equipment or materials identified are necessarily the best available for the purpose.
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Variant number i Rotation Matrix Sβ
i Quaternions Burgers Relationship

1



1

1

1


 [1,0,0,0] (101)||(0001) , [1̄11]||[112̄0]

2



1

−1

−1


 [0,-1,0,0] (1̄01)||(0001) , [111]||[112̄0]

3




1

1

1


 [0.5,0.5,0.5,0.5] (011)||(0001) , [111̄]||[112̄0]

4




−1

−1

1


 [0.5,0.5,-0.5,-0.5] (011̄)||(0001) , [1̄11]||[112̄0]

5




−1

−1

1


 [0.5,0.5,-0.5,0.5] (11̄0)||(0001) , [111̄]||[112̄0]

6




−1

1

−1


 [0.5,-0.5,0.5,0.5] (110)||(0001) , [1̄11]||[112̄0]

7



−1

1

−1


 [0,0,-1,0] (101)||(0001) , [111̄]||[112̄0]

8



−1

−1

1


 [0,0,0,-1] (1̄01)||(0001) , [11̄1]||[112̄0]

9




−1

1

−1


 [0.5,-0.5,-0.5,0.5] (011)||(0001) , [11̄1]||[112̄0]

10




1

−1

−1


 [0.5,-0.5,0.5,-0.5] (011̄)||(0001) , [111]||[112̄0]

11




1

−1

−1


 [0.5,0.5,0.5,-0.5] (11̄0)||(0001) , [111]||[112̄0]

12




1

1

1


 [0.5,-0.5,-0.5,-0.5] (110)||(0001) , [11̄1]||[112̄0]

Table 1: Crystallographic relationship of the 12 variants to the parent β grain, defined by rotation matrices and
quaternions.
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inate porosity in the material due to the AM process. This has the added effect of allowing the

α laths to slowly coarsen over the course of the treatment, similar to the Ostwald ripening process.

Figure 2: Overview of the powder-bed fusion build process with example build coupon and extraction of testing
samples.

2.3. Tension Testing

Ten tensile specimens are excised from the upper half of selected Ti-6Al-4V components, using

electrical discharge machining (EDM), for three material-load direction pairs. The material-load

pairs include:

Set 1: Ten samples of as-built material without heat treatment, loaded along the build

direction;

Set 2: Ten samples of as-built material without heat treatment, loaded perpendicular to

the build direction.

Set 3: Ten samples of HIP-treated material loaded along the build direction;

The tensile specimens with 12.7 mm total length, 1.27 mm thickness, 2.54 mm gauge width, and

a 3 mm gauge length set by an extensometer, are deformed at a strain rate of 10−3 s−1 in uniaxial

tension. The linear portion of the stress-strain curve is fit in accordance with ASTM E3076-18

[49] to calculate the Young’s modulus. The other tensile properties, e.g. yield strength, ultimate
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strength, uniform elongation, and elongation at fracture, are found according to ASTM E8-16a

[50] and have been previously reported for this particular EBM-PBF build in [51]. An analysis

of variance is completed with InStat software [52] and used to test the null hypotheses that the

tensile properties are equal across material conditions with a statistical significance of p ≤ 0.01.

2.4. Defect Characterization

Samples of each material condition are analyzed for internal porosity with an X-ray computed

tomography (CT) machine (Zeiss Xradia) with the following parameters: 160 kV, 10 W, 1 µm

voxel size. The volume-averaged porosity is found to be 0.1% for the as-built conditions, and

negligible for the HIP-treated samples.

2.5. Microstructural Characterization with EBSD Scans

Samples from each material condition are sectioned from the same build height (Z = 20

mm), ground with SiC paper (400 grit through 1200 grit), polished with a suspension of 1 µm

diamond particles and finished with a vibratory polish using 50 nm colloidal silica. Backscattered

electron images, as shown in figure 1(a,d), are recorded using a Zeiss Gemini field-emission

scanning electron microscope (FE-SEM): 20 kV, 60 µm aperture, high current mode, and an

8 mm working distance. Six small-area electron backscatter diffraction (EBSD) scans in figure

1(b,c,e,f) are performed for each material condition using a Zeiss Leo FE-SEM: 20 kV, 120 µm

aperture, 7.8 nA current, and a 19 mm working distance. For the purposes of measuring α lath

thickness and phase fraction, the EBSD step size is 0.150 µm and the field of view is 50 µm x 50

µm. Multi-tile large-area EBSD scans are performed for each material condition and encompass

at least 10 mm2 in area. The measurements are performed with a Zeiss Leo FE-SEM: 20 kV,

120 m aperture, 7.8 nA current, and a 19 mm working distance. A step size of 1 µm is used to

capture global texture in each 450 µm x 450 µm tile.
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3. Microstructure Characterization and Generation of Statistically Equivalent Mi-

crostructural Volume Elements (SEMVEs)

Micromechanical simulations of additively manufactured Ti-6Al-4V alloys are conducted on

SEMVEs [38, 39] generated by equating the statistics of various morphological and crystallo-

graphic descriptors of EBSD scans of the microstructure. The statistics extracted from the

experimental micrographs necessarily correspond to the thermodynamic processes in the mi-

crostructure generation process. The aim of constructing statistical instantiations of microstruc-

tural descriptors is to describe the natural variation within the observed microstructure and to

incorporate this stochasticity into the constitutive model. The following process of generating

SEMVEs is tailored to provide an unbiased estimation of the microstructural statistics, hewing

as closely as possible to the observed statistical distributions.

3.1. Image Processing and Statistical Analysis of α Laths

An automated procedure is established for cleanup and segmentation to acquire the statistics

of the size, shape, orientation, and crystallography of α laths in the Ti-6Al-4V microstructure.

Large-area images with lower resolution and high-resolution small-area images are sampled for

microstructural characterization and statistical analysis. After stitching together, the large-area

images containing 0.4µm pixel sizes, have overall dimensions of 1042 µm by 3116 µm for the XY

EBSD scan, and 1996 µm by 4822 µm for the XZ EBSD scan. These α lath scans are shown in

figures 3(a,c), and the corresponding IPF color keys are shown in figure 3(f). These images are

primarily used for determining the relative volume fraction of variants, as well as the morphology

of the parent β grains. More detailed small-area scans, with a pixel size of 0.15 µm, are used for

characterizing the α lath morphology.

The EBSD scans are all imported into the DREAM.3D suite [53], and the following steps are

applied for consistency.

1. A bad data filter is applied to remove any pixel with a confidence index ≤ 0.1, followed by

a fill bad data approach to use nearby pixel information to replace the removed data;
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2. Individual grains are next segmented with a 1◦ misorientation tolerance;

3. Any segmented feature containing fewer than 50 pixels is removed from both the small and

large area images, and the feature IDs are replaced via a burn algorithm.

4. The best-fit ellipse and mean crystallographic orientation are calculated for every segmented

grain, to calculate the grain aspect ratio and orientation.

The thickness distributions of the α laths are determined from the thickness of 60 different α

laths in the ensemble. The α lath size has a significant length-scale effect in the crystal plasticity

model.

3.2. Construction of Parent Beta Grains and Variant Identification

The reconstruction methodology is based on the methods described in [54, 55]. In considera-

tion of rotational symmetries of the parent β and child α phase, a particular β phase orientation

can give rise to 12 unique α variants, as identified in Table 1. Among these, however only

five are unique crystallographic misorientations, which can be used to reconstruct the β phase.

The quaternion representation of orientation space is employed in this development, where an

arbitrary orientation is represented with a unit quaternion [56] as:

q̄ = (q0,q) = {q0, q1, q2, q3} with the constraint (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = 1

Here q0 and q = (q1, q2, q3) represent the scalar and vector parts of the quaternion, respectively.

The algorithm for generating parent β grains from the image of a child α laths begins by

aggregating the pixel-level orientation data into α laths defined in the previous section. A burn

algorithm, which locates edge-connected pixels containing crystallographic misorientations less

than a user-specified tolerance, is executed. The misorientation ∆q̄ab between two quaternions

q̄a and q̄b is the quaternion product of the inverse of q̄b and q̄a, defined as:

∆q̄ab = ∆(q̄a, q̄b) = (q̄a)−1 · q̄b = (qa0q
b
0 − qa · qb, qa0q

b + qb0q
a + qa × qb) (3)
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This misorientation is related to a rotation angle ω that is expressed through the relation

q0 = cos(ω
2
), whereas the rotation axis n is obtained from the relation q = nsin

(
ω
2

)
. The

average orientation is calculated from this data by ensuring that all pixels belonging to a grain

i are in the fundamental zone, defined as the minimum set of orientations such that all crystal-

lographic orientations can uniquely map to it [57]. The conventions used in this paper are the

same as those employed in the open-source software package MTEX [58].

To acquire this, the product of the measured quaternion q̄i
measured with the rotational sym-

metry operators SHCP
k is taken for HCP crystals, such that q̄i = q̄i

measured[S
HCP
k ] for k = 1...12.

A single symmetry k∗ is chosen from the set k = 1 · · · 12, such that q̄i is in the fundamental zone.

With all orientations in the fundamental zone identified as being in the same grain, the average

orientation can be approximated as the arithmetic mean of the quaternions normalized by their

respective vector norm [59] as:

〈q̄〉 = 1

N

N∑

n=1

q̄n

||q̄n|| (4)

Unique α laths are identified from clusters of pixels, following steps delineated in section 3.1.

Subsequently, an algorithm is executed to loop over segmented α laths that are not yet assigned

to a contiguous β region, using the following steps.

For a selected ith α lath, a list of all contiguous α laths with a shared boundary is con-

structed.

All possible misorientations between the ith α lath and the jth neighbor are computed from

the relation ∆q̄ij
k = SHCP

k ∆q̄ijSHCP
k . Symmetry operators are applied on both sides of this

misorientation.

As before, the quaternion in the fundamental zone is identified and the misorientation

between the ith α lath and jth neighbor is recorded as ∆q̄ij
k∗ .

The misorientation between the ith and jth α laths ∆q̄ij
k∗ , and the set of the six crystallo-

graphically allowable misorientations between α laths from the same parent β grain q̄BOR
l
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in Table 2 are computed as ∆(q̄BOR
l ,∆q̄ij

k∗).

If the smallest of these resultant misorientations is less than a user-specified tolerance (3◦

in this paper), i.e.

min
l
(|∆(q̄BOR

l ,∆q̄ij
k∗)|) < tolerance, where | · · · | represents only the scalar part of the quaternion

then the two variants are assumed to have been inherited from the same parent β grain,

and are temporarily marked as belonging to the same β region.

It should be noted that in a few special cases, α variants within different prior β grains can share

one of these crystallographic misorientations through some underlying crystallographic relation-

ship in the parent β grains, such as sharing a common < 110 > axis [60]. The present method

relies on tight crystallographic tolerances, by driving the minimum tolerance angle on the initial

segmentation of pixels-to-grains down as far as possible. An alternate robust method has been

recently proposed in [61].

Unique Orientation ID q0 q1 q2 q3

1 1 0 0 0

2 0.9958 0 0 -0.0918

3 0.7071 0.2959 -0.6422 0

4 0.8514 -0.5000 0 -0.1582

5 0.8624 -0.4979 0.0459 -0.0795

6 0.8660 0.2500 0.4330 0

Table 2: List of all possible quaternion misorientations between two α variants inherited from the same prior β
grain, q̄BOR

l

At least 4 unique variants are required to uniquely identify the orientation of the parent β

orientation from the observed α lath crystallography [62]. If there are fewer than 4 unique α laths

belonging to the same β grain, then the β orientation is not guaranteed to be calculable. Hence,

if clusters of α laths belonging to the same parent β grain contain more than 4 unique variants,

then this cluster has a unique solution to identifying the parent β grain orientation. However,

if there are fewer than 4 unique variants, the cluster is disbanded, and the loop is passed to the
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next iteration.

Following identification, the orientations of the contiguous β grains are computed by first

calculating trial orientations comprised of all 6 possible parent β orientations for each α lath

within an identified β region. The trial β orientations are calculated by the formula Tl =

q̄D−1

Sα
l q̄

α, where Sα
l is a special subset of six of the hexagonal rotational symmetry elements

described in [54], q̄D−1

= {0.5406, 0.7046, − 0.0800, 0.4558} is the inverse of equation (1) in

quaternion form, and q̄α is the orientation of the α lath. A list of all trial β orientations is

constructed as βml, where m ranges from 1 to the number of α laths in the previously identified

β region, and l represents each of the 6 possible trial β orientations. From this list βml, the

orientation β is calculated by solving an optimization problem, delineated as:

β = min
β

nNeighbors∑

m=1

|∆(β, βml)|2Iml S.T. Iml ∈ Z[0, 1] ,

6∑

l=1

Iml = 1 ∀m (5)

where |∆(β, βml)| represents only the scalar portion of the quaternion, and Iml is an indicator

function that contains only one positive value for each m − th entry. The resultant β is the

orientation that has the minimum misorientation between each of the trial β orientations. The

pseudo-code for generating the parent β grain from the α laths is given in Appendix A. An exit

criteria may be incorporated to avoid the rare possibility for this algorithm to end in an infinite

loop if not all grains can be assigned.

Figures 3(b,d) show the reconstructed β section maps, and the corresponding IPF color

keys are shown in figure 3(e). The different orientation between the as-scanned EBSD and

reconstructed suggests that there is a strong preference for the < 011 > direction of the prior

β grains, and that any of the 12 unique variants could lead to β grains with this orientation.

The reconstruction of β grains of the small and the large-area images are performed with the

same methodology. No major differences are observed in the reconstruction quality at different

resolutions.
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Figure 3: (a) As-scanned XY EBSD map of α laths in the AM-based Ti-6Al-4V microstructure, (b) reconstructed
β XY EBSD map, (c) as-scanned XZ EBSD map of α laths in the AM-based Ti-6Al-4V microstructure, (d)
reconstructed β XZ EBSD map, (e) IPF key for the reconstructed β EBSD maps in figures (b,d), (f) IPF key for
the as-scanned EBSD maps in figures (a,c).

3.3. Volume Fraction of Variants

Characterization of the distribution of volume fraction of the 12 variants is integral to the

construction of an effective crystal plasticity constitutive model, in which the material response

corresponds to the volume fraction-weighted contribution from each of the 12 variants. For ensur-

ing an unbiased sampling and reconstruction of the volume fraction distribution, the generation

of statistically equivalent volume fractions for each of the variants must conform to the following

five constraints.

(i) The distribution of variants with non-zero volume fractions within a parent β grain must

be similar to the observed distribution over many samples, as shown in Figure 4(a).

(ii) The total volume fraction of all variants at a material point must add up to
∑12

i=1 v
i
f = 1.

(iii) The distribution of volume fractions within a parent β grain must conform to the empirical

distribution, as shown in Figures 4(d,e,f).

(iv) The total volume fraction of each variant should reflect the global average of each variant,

as shown in Figure 4(b)
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(v) Pairwise correlation between between variant volume fractions must be maintained.

The proposed methodology, satisfying all of the above conditions, is conducted using the

following steps.

1. The distribution in Figure 4(a) is directly sampled to obtainN number of α laths containing

a non-zero volume fraction within a parent β grain satisfying constraint (i).

2. N − 1 points are randomly sampled in the range [0,1], and sorted in ascending order.

Volume fractions are assigned to the distances between the values of this sorted list in

this range. This implies that the first volume fraction is the difference between 0 and the

lowest sampled value, the second is the difference between the lowest sampled value and

the second lowest sampled value, etc.

3. The above operation is performed for a set number of times, 100 in this example, to generate

a representative distribution of variant volume fractions over many possible β grains. It

serves as an initial guess for matching the experimental distribution.

4. This trial set of variant volume fractions is matched with the experimental distribution

through an algorithm, with an established goodness of fit metric having a set baseline

value. The Kolmogorov-Smirnov test statistic:

KSRef = max
x

(||FSyn(x)− FExp(x)||),

defined as the maximum difference between cumulative distribution functions (CDFs) of the

experimentally observed samples FExp(x) and the initial synthetically generated samples

FSyn(x) is selected for this purpose.

5. Next, one of the 100 β grains is randomly selected. One point in the set of N − 1 points

is randomly perturbed, while maintaining a minimum spacing of 0.01 between all other

points in the [0,1] range.

17



6. The CDF of this modified trial distribution is subsequently calculated and the Kolmogorov-

Smirnov test statistic is computed and stored as KSTr. If this perturbation improves the

test statistic, i.e. KSRef > KSTr, then this modification is retained, otherwise, it is

discarded.

7. This iteration is continued until a convergence criterion is met, or a specified number of

iterations are reached.

This approach satisfies constraints (ii) and (iii). The resulting distributions are compared for

N= 9, 10, 11 in Figures 4(d,e,f) respectively with satisfactory agreement.

The preference for variants in the microstructure is not necessarily uniform and depends on

a multitude of material processing factors, including residual stresses, temperature gradients,

cooling rates etc. [41], thus favoring particular variants. The volume fraction of individual

variants vif over the entire domain is shown in Figure 4(b). Following the assignment of all of

the volume fractions, the variant ID’s to which the volume fractions are assigned are shuffled to

satisfy the overall distributions of volume fractions shown in Figure 4(b). This process satisfies

constraint (iv). As shown in [41], there are particular interactions between variants that are

energetically favored during the formation of the Widmanstätten microstructure. To determine

if there are such pairings between the variants, a covariance-like metric is defined to determine the

volume-weighted frequency of observed variant pairings, relative to their expectation expressed

as:

cij =
1

Nβ

Nβ∑

k=1

vf
i
k
vf

j
k

v̄if v̄
j
f

(6)

where v̄jf is the volume-averaged fraction of the jth variant, andNβ = 12. As shown in Figure 4(c)

the presence of any one variant does not influence the likelihood of the presence of another variant

in an averaged sense. In other words, cij does not deviate from 1 on off-diagonal terms sufficiently

to warrant the additional model complexity of including a covariance matching scheme, satisfying

constraint (v). It should be noted that the high covariance of variants 3 and 10 is likely due to

random noise on account of their minuscule sample size.
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Figure 4: (a) Histogram of probability density function (PDF) of the number of variants experimentally observed
in a parent β grain, (b) PDF of volume fraction of variant ID numbers, (c) Correlation matrix cij of variant
IDs relative to predicted values based on the total volume fraction; Comparing CDFs of variant volume fractions
within a parent β grain with that generated by the synthetic sampling method for: (d) β grain N = 9, (e) β grain
N = 10, and (f) β grain N = 11.

3.3.1. Statistics of α Laths

Statistical characterization of the α laths in the 3D Widmanstätten microstructure is central

to the crystal plasticity constitutive model discussed in section 4, which incorporates α laths

statistics.The constitutive model assumes that α lath boundaries form barriers to dislocation

glide on slip planes, affecting the free motion of dislocations. This provides a basis for the

determination of a mean-free path for dislocation glide on different slip systems in the α lath,

to be incorporated in Hall-Petch type relations. The α lath morphology is approximated as

a 3D ellipsoid. This geometric representation of the α lath is statistically representative with

respect to morphological parameters, while maintaining a relatively low complexity and high

parametrizability. In this analysis, a single 3D ellipsoid is assigned to each variant within a

parent β grain, effectively assuming a single 3D ellipsoid to approximate the morphology of all

α laths of that variant within the β grain. A representative 3D ellipsoid shown in figure 5 is
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parametrically represented in the principal coordinate system, with its origin at the centroid, as:

( x̄

A

)2

+
( ȳ

B

)2

+
( z̄

C

)2

= 1 (7)

where A ≥ B ≥ C are semi-major, intermediate, and semi-minor axis lengths respectively. A

position vector in the principal coordinate system is expressed as x̄ = x̄ex̄ + ȳeȳ + z̄ez̄, where

ex̄, eȳ, ez̄ are unit vectors along the major, intermediate and minor axes, and x̄, ȳ, z̄ are the

respective components. The process of generating the ellipsoids starts with the identification

and segmentation of 2D ellipses obtained in section 3.1, along with the acquisition of the axis

lengths, variant ID, and crystallographic orientation of the α and β laths. For each of these 2D

ellipses, multiple trial 3D ellipsoids are generated, from which the most probable 3D ellipsoid

from this set is determined and assigned homogeneously within a parent β grain.

Figure 5: Schematic showing the principal axes of the representative 3D ellipsoid, as well as the crystallographic
relationship between the minor axis ez̄ α lath and the {1̄12} crystallographic direction of the parent β grain.

As shown in [63], there is a relationship between the crystallographic direction nβ = {1̄12} of

the parent β grain and the minor axis ez̄ of the 3D ellipsoid representing the α lath. According

to this relation, the minor axis ez̄ is written in the reference frame of the sample as:

ez̄ = G−1Sβ
i

nβ

|nβ|
(8)

where Sβ
i represents the symmetry for the ith variant described in Table 1, and G is defined as a

rotation matrix that transforms a vector from the reference coordinates to the crystallographic
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(a) (b)

(c) (d)

Figure 6: Probability density functions of the aspect ratios and semi-major axis lengths of the most probable 3D
ellipsoid: (a) A/B aspect ratio distribution, (b) A/C aspect ratio distribution, (c) B/C aspect ratio distribution,
and (d) Size distribution of the semi-major axis A.

coordinates of the parent β grain.

The most probable 3D α lath ellipsoid conforming to the crystallographic relation in equation

(8), is determined from a sample size of fifty generated trial ellipsoids. Upon establishing the

direction for ez̄, the other two orthogonal principal axes with unit vectors ex̄ and eȳ are selected

randomly about the z̄ axis. Subsequently, the most probable ellipsoid aspect ratios A/C and

A/B are determined through a sampling process, in which the 2D ellipse formed by the inter-

section of the trial 3D ellipsoids with a centroidal XY plane, best matches the observed ellipse

aspect ratios from EBSD scans. Finally, with known aspect ratios, the overall size of the ellipsoid

is obtained through an estimation of the principal axis lengths (A,B,C). This process involves

calculating the relationship between (A,B,C) of the 3D ellipsoid, and the semi-minor axis of
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the 2D ellipse formed by the intersection of the most probable 3D ellipsoid and the XY plane.

The length of the semi-minor axis of the 2D ellipse is estimated by randomly selecting from the

measured axis lengths of the 2D ellipse set corresponding to experimental EBSD maps. Checks

are conducted to ensure that the semi-minor axis length C is not less than the minimum of the

set of measured 2D ellipse axis length in EBSD scans.

Results of the 3D α lath ellipsoid generation process for the as-built and HIP-treated ad-

ditively manufactured Ti-6Al-4V microstructure are shown in Figures 6. The plots include

distributions of the resulting aspect ratios A/C, A/B, B/C, and the size of the semi-major axis

A. For all quantities, a log-normal distribution is used to parametrize the distributions with a

good fit. The aspect ratio distributions for the as-built and HIP-treated samples are generally

quite similar. However, the size of the α laths is much larger for the HIP-treated samples. This

plays an important role in the overall mechanical response of the material.

3.4. Parent Beta Grain Statistics and Reconstruction

(a) (b)

Figure 7: Reconstructed SEMVEs of the parent β grain for two orthogonal directions corresponding to (a) vertical
loads and (b) horizontal loads.

The morphological and orientation statistics of the parent β grains are extracted from the

low-resolution orthogonal XY and XZ large-area images and processed using the DREAM.3D

software [53]. The overall microstructural morphology is well represented by elongated grains
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in the build direction. The SEMVEs are generated in the DREAM.3D framework. The aspect

ratio of the β grain morphology in the build direction is characterized from the statistics of the

XZ images, while the statistics from the XY images are used to describe the grain morphology

perpendicular to the build direction. The overall A/B and A/C aspect ratios are plotted in

Figure 8(a,b). Two sets of 5 microstructural SEMVEs in the orthogonal directions (vertical and

horizontal) are constructed as shown in Figures 7 respectively, with each SEMVEs containing

approximately 85 β grains. The overall SEMVE dimensions are 400µm× 200µm× 200µm. The

elongated grains are in the build direction and are textured to favor the (110) direction. The

orientation distribution of the parent β grains showing (001) and (011) pole figures are shown in

Figures 8(c,d).

(a) (b)

(c)
(d)

Figure 8: Aspect ratio of the 3D ellipsoid representing β grains (a) A/B and (b) A/C; orientation distribution
of the parent β grains showing (c) (001) pole figure and (d) (011) pole figure.
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4. Crystal Plasticity Model Accounting for α Lath Variants and Porosity

The deformation behavior of the equivalent parent β grains with a statistical representation

of the 12 α lath variants in the additively manufactured Ti-6Al-4V with Widmanstätten mi-

crostructure is modeled by an effective finite deformation, crystal plasticity model. The model

accounts for all HCP slip systems pertaining to the α lath representation in the parent grains.

Furthermore, the model incorporates porosity and its evolution with the material state, in con-

sideration of the effect of void distribution in the microstructure. The effective crystal plasticity

model for the equivalent parent β grains in the Widmanstätten microstructure is built on ho-

mogenization concepts introduced in [45]. The porosity evolution law follows developments in

[46], which has developed an effective constitutive model for porous viscoplastic HCP crystals,

capturing the effect of initial porosity, crystallographic orientation, void growth, stress triaxi-

ality, and Lode parameters. Furthermore, it also accounts for a variety of loading cases, viz.

compressive and tensile loading, low to high stress triaxialities, and uniaxial, biaxial and triaxial

loading. This model is based on the variational framework in [64] and its phenomenological

extensions in [65, 66]. Phenomenological extension parameters are introduced into the effective

plastic potential to relax the assumptions employed in [65, 66].

In the following, the equations refer to the evolution of state variables for any one of the

12 potential variants. The stress-strain relationship in the effective crystal plasticity model is

written in the intermediate configuration in terms of the Mandel stress, given as [46]:

M = CeŜ (9)

where Ce = FT
e Fe is the right Cauchy-Green tensor and Fe is the elastic part of the deformation

gradient, defined as Fe = FF−1
p . Here F and Fp represent the total deformation gradient and

the plastic deformation gradient, respectively. The second Piola-Kirchhoff stress tensor Ŝ in the
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intermediate configuration is expressed as:

Ŝ = CEe (10)

where C represents a fourth-order anisotropic elasticity tensor, and Ee = Ce − I is the Green-

Lagrange strain tensor. Plastic deformation for the porous crystalline material is not volume-

preserving i.e. detFp 6= 1. The plastic velocity gradient tensor in the intermediate configuration

for a porous HCP variant in the parent grain with void volume fraction f is given as [46, 65, 66]:

Lp =

NSF∑

i

(1− wi
1f)

N i
slip∑

α

∂eα∗
∂τα∗

∂τα∗
∂M

(11)

where for each variant, eα∗ is an effective slip potential function, wi
1 is a potential function

parameter, and τα∗ is the effective resolved shear stress. NSF represents the total number of slip

families, and N i
slip is the number of slip systems in the i-th slip family. For HCP crystals NSF = 5

corresponding to the < a >-basal, < a >-prismatic, < a >-pyramidal,< c + a > pyramidal I,

and < c+ a > pyramidal II slip families. The effective slip potential e∗α is expressed as:

e∗α =
γ̇α
0

m+ 1

(
τα∗
ḡα0

)m+1

(12)

where ḡα0 is the initial slip-system resistance given in equation 17, and γ̇α
0 and m are the reference

slip-rate and rate sensitivity exponent respectively. The porosity or void volume fraction f evolves

according to the relation:

ḟ = (1− f)Tr(Lp) (13)

where Tr corresponds to the trace of a matrix. The effective resolved shear stress on the α slip

system τ ∗α, is iteratively solved by satisfying the following equation:

(
τα

τα∗

)2

+ wα
3w

α
1 f

M2
eq

(τα∗ )
2
+ 2fwα

1 cosh

(
w2

αM
2
m

τα∗

)
− 1− (wα

1 f)
2 = 0 (14)
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where Mm = −1
3
Tr(M) is the hydrostatic part of the Mandel stress and Meq =

√
3
2
MijMij

represents the equivalent Mandel stress. The resolved shear stress on the α slip plane is expressed

as τα = M : sα0 where the Schmid tensor is defined as sα0 = m0 ⊗n0 for a slip normal n0 and slip

direction m0. The potential function parameters wα
1 , w

α
2 , w

α
4 are given by the set of equations

[46]:

wα
1 = aα1 + bα1 tanh

(
−dα1

(
f − f0
f0

))

wα
2 = aα2 + bα2 tanh

(
−dα2

(
f − f0
f0

))

wα
4 = 1 + tanh

(
−dα4

(
f − f0
f0

))
(15)

Values of the constant coefficients aα1 , b
α
1 , d

α
1 , a

α
2 , b

α
2 , d

α
2 , d

α
4 , and wα

3 for different slip systems

have been calibrated in [46] and are given in Appendix B. The plastic slip rate γ̇α for a given

slip system is given by a power-law form of the flow rule as:

γ̇α = ˙̃γα

〈 |τα∗ − χα| − ταGP

gα + ταGF

〉 1

m

sign (τα∗ − χα) (16)

where 〈〉 is the Macaulay bracket, ˙̃γα is the reference slip rate, m is the rate-sensitivity exponent,

and χα is the back-stress on a particular slip system. The resolved shear stress components ταGP

and ταGF contribute to the parallel and forest geometrically necessary dislocations (GNDs) respec-

tively. The temperature-dependent slip-system resistance due to statistically stored dislocations

for the α slip system is expressed as [67]:

gα(θ) = ḡα0 + gαHP − ĝα
(
1− exp

(
θ − θαref

θ̂α

))
(17)

where ḡα0 is the initial slip-system resistance, gαHP corresponds to the contribution from grain size

effect and ĝα is a scaling parameter for its temperature dependence. The temperature-dependent

constants ḡα0 , ĝ
α, θαref and θ̂α have been calibrated in [67] and are given in Appendix B. The size
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dependent contribution is attributed to the Hall-Petch effect as:

gαHP =
K√
Dα

(18)

where K is the Hall-Petch coefficient, calibrated in [68] is given in Appendix B. Dα is the mean

free-path or traversable length of a dislocation in the slip direction mα
0 across the α lath, whose

morphology is characterized by the equation (7) for a 3D ellipsoid shown in Figure 5. The

distance traversed by a dislocation in the mα
0 direction through the center of the ellipsoid is

given by

Dα =
√
[A(ex̄ ·mα

0)]
2 + [B(eȳ ·mα

0)]
2 + [C(ez̄ ·mα

0)]
2 (19)

The evolution of the hardening rate is given as:

ġα(t) =

Nslip∑

β=1

q̃αβhβ
∣∣γ̇β

∣∣ (20)

where q̃αβ represents the latent hardening matrix and the self-hardening contribution hβ is given

by [69]:

hβ = hβ∗
0

∣∣∣∣1−
gβ

gβs

∣∣∣∣
r

sign

(
1− gβ

gβs

)
, gβs = g̃s

β

(
γ̇β

˙̃γ

)n

(21)

Here n, r, and g̃βs are hardening parameters described in [45], gβ is the slip-system saturation

deformation resistance and hβ is the slip hardening rate, given as:

hβ∗
0 = hβ

0w
α
4 (22)

hβ
0 is the initial slip hardening rate that has calibrated in [46] and given in Appendix B.

An Armstrong-Frederick type law [70] is used for back-stress evolution, expressed as:

χ̇α = cγ̇α − dχα
∣∣γ̇α

∣∣ (23)
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where c and d are parameters calibrated in [67]. Hardening is attributed to GNDs for parallel

and forest interactions and is described by the following equations:

ταGP = cα1G
αbα

√
ραGP + ραAP , ταGF =

Qα

cα2 b
α2

√
ραGF + ραAF (24)

where ραGP and ραGF respectively represent GND densities parallel and normal to the slip plane

α. They are calculated from the Nye tensor Λ = ∇×Fp as detailed in [67]. The coefficients can

be found in the supplementary information. ραAP and ραAF terms are GND augmentation terms

described next.

4.1. Augmented GND Density Accounting for Lath Boundaries

The calculation of GND density from the Nye tensor Λ = ∇ × Fp requires the explicit

crystallographic representation of individual grains and their boundaries in the microstructure.

Due to the lack of this explicit α lath boundary representation in the equivalent crystal model,

the ∇×Fp term due to dislocation pileup is significantly smaller than in models with explicitly

represented crystal boundaries. It is necessary to augment the effective crystal plasticity model,

which does not explicitly incorporate α lath boundaries within the parent β grains, to compensate

for the lower GND densities affecting plastic hardening. The enhancement is taken from a model

in [71], where GND densities are approximated for a matrix with plates that are assumed to be

impenetrable to dislocations, separated by a distance Dα. The augmented GND density is given

as:

ραGND = c5
γα

bαDα
(25)

where γα represents the cumulative slip on a slip system α, and b represents the length of

the Burgers vector. The parallel and forest augmented GND densities are related to the total

augmented GND density by the relations:

ραAF =
N∑

β

χαβ
AF |ρβGND sin(nα, tβ)| , ραAP =

N∑

β

χαβ
AP |ρβGND cos(nα, tβ)| (26)
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As discussed in [67], χαβ
AF represents the interaction matrix between slip systems. For a specified

deformation gradient F applied to a β grain, the above set of equations evolves separately for

each of the 12 variants. Since this augmentation is not dependent on the term ∇ × Fp for the

Nye tensor, this approach is not dependent on the mesh resolution.

4.2. Stresses at a Material Point

The above equations correspond to to the evolution of state variables in a single α lath variant,

for a given deformation gradient F. Evaluating the stresses at an element integration point in

the FE model requires a volume fraction based weighting over all of the 12 variants. The Cauchy

stress for the kth variant is given as:

σ(k) =
1

detF
(k)
e

F(k)
e

−T
M(k)F(k)

e

T
(27)

The corresponding stress tensor for a material point is expressed as the sum over all the 12

variants as:

σ =
12∑

k=1

v
(k)
f σ(k) (28)

The state variables of each variant evolve independently, and are not related to one another.

This method is substantially more efficient than if all of the α laths were explicitly represented

and simulated.

4.3. Calibration of the Crystal Plasticity Model

The crystal plasticity and porosity evolution parameters, given in Appendix B, are adopted

from prior work in [67, 46, 68]. In these papers, the crystal plasticity parameters are calibrated

using experimental results for a wide range of strain-rates and loading conditions. For cali-

brating additional parameters related to the additively manufactured Ti-6Al material, the first

of the material-load direction sets in Section 2.3, is simulated. For this process, 5 SEMVEs

are generated for the set by following the steps in Section 3 with randomly-generated, differ-

ent initial conditions. Voxelized representations of the generated SEMVEs are meshed with
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4-noded tetrahedral (TET4) elements, using the meshing package Simmetrix [72]. The resul-

tant microstructures contain approximately 175k elements and an example instantiation with

mesh is shown in figure 9(a). The average volume of the α laths in the SEMVE are 96 µm3 for

the as-built material microstructure, and 468 µm3 for the HIP-treated material microstructure.

This corresponds to approximately 168,000 and 35,000 α laths for the SEMVEs of the as-built

and HIP-treated materials respectively. Displacement boundary conditions are applied on the

model corresponding to a strain rate of 10−3 up to a final engineering strain of 18.5%. Minimum

boundary conditions (MBCs), preventing rigid body motion, are applied on the SEMVE bound-

ary. Given that the size difference between the SEMVE and the experimental specimen is not

very large (∼ 10), the MBCs are deemed appropriate as they allow instabilities like necking to

occur in the SEMVE, as seen in the actual specimen. Applying periodic boundary conditions

on the SEMVE can over-constrain the deformation modes and may inhibit these instabilities.

The calibration process evaluates parameters to match the experimental stress-strain response

as shown in figure 9(b). The corresponding optimized parameters are given in table 3.
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Figure 9: (a) A single instantiation of the SEMVE of the parent β grains (shown with different colors) containing
approximately 85 grains, (b) comparison of the engineering stress-strain response of 5 SEMVE instantiations,
and their mean, with experimental data acquired in Section 2.3, and (c) comparison of the probability density
function of loading direction Cauchy stress for 5 different mesh resolutions.

For the calibration process, a metric corresponding to the percentage error in the loading

direction stress component σ is minimized. For two arbitrary stress-strain curves σa(ǫ) and σb(ǫ)
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Description Symbol Value(s)
Augmented GND Coefficent c5 3
Initial Basal Slip resistance ḡBasal

0 206 (MPa)
Initial Prismatic Slip resistance ḡPrismatic

0 203 (MPa)
Initial Pyramidal < a > Slip resistance ḡPyramidal<a>

0 309 (MPa)
Initial Pyramidal < a+ c > I Slip resistance ḡPyramidal<a+c>I

0 400 (MPa)
Initial Pyramidal < a+ c > II Slip resistance ḡPyramidal<a+c>II

0 400 (MPa)

Table 3: Calibrated additional crystal plasticity model parameters.

the metric is given as:

Φ(σa(ǫ), σb(ǫ)) =
1

max(σa)ǫfinal

∫ ǫfinal

0

|σa(ǫ)− σb(ǫ)|dǫ (29)

The error metric for the experimental and simulation data is measured by Φ(σ̄exp(ǫ), σ̄sim(ǫ)),

where σ̄exp(ǫ) =
1

Nexp

∑Nexp

i=1 σi
exp(ǫ) and σ̄sim(ǫ) =

1
Nsim

∑Nsim

i=1 σi
sim(ǫ) are respectively the mean

engineering stress strain responses for all experiments and simulations in the set. A value

Φ(σ̄exp(ǫ), σ̄sim(ǫ)) = 0.019 corresponds to a ∼ 1.9% difference in the average stress for strains

ranging from 0 to 18.5%. Similar metrics for purely experimental and simulation data correspond

to the average level of deviation in the data,

Φ̄exp =
1

Nexp

Nexp∑

i=1

Φ(σ̄exp(ǫ), σexp(ǫ)
i) and Φ̄sim =

1

Nsim

Nexp∑

i=1

Φ(σ̄sim(ǫ), σsim(ǫ)
i) (30)

The metrics are computed to be Φ̄exp = 0.0067 and Φ̄sim(ǫ) = 0.0082.

The contour plots of the simulated equivalent plastic strain, Cauchy stress, and porosity in

the SEMVE at the final strain of 18.5% strain are depicted in figure 10. The equivalent plastic

strain contour plot in figure 10(a) shows substantial variation, including plastic localization with

the onset of necking. The evolving void volume fraction and the Cauchy stress in figures 10(b,c)

also show significant variations. This stochastic material response is attributed to a combination

of the spatial variations in α lath statistics and the parent β grain morphology.

The porosity evolution is further compared to that for a single uniaxial strain test conducted
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(a) (b) (c)

Figure 10: Contour plots of (a) equivalent plastic strain, (b) Cauchy stress, and (c) void volume fraction in a
SEMVE of the parent β grain at 18.5% strain.

under similar conditions in [73]. The porosity or void volume fraction in this test was observed to

have increased by 9%. The corresponding increase in the simulated void volume fraction f across

the SEMVE instantiations is 15%, with f increasing from 0.11% to 0.127%, which is deemed to

be satisfactory agreement.

A mesh sensitivity study is performed by meshing the vertically oriented microstructure in

figure 9(a) with 5 different mesh densities, with the number of elements ranging from 84×103 to

360× 103. The microstructure is loaded to a maximum of 2.5% engineering strain. The volume-

averaged, loading direction stresses are found to be within 1% of each other for all the 5 meshes.

Furthermore, the probability density functions (PDFs) of the loading direction stresses in the

simulated microstructures are compared in figure 9(c). It is seen that the PDFs begin to converge

at around 130k elements. This convergence is further substantiated by the comparatively low

values of the Kolmogorov Smirnov test statistics [74] between the distributions. The KS-test

statistic between 360k and 130k elements is determined to be 0.0295. In contrast, the KS-test

statistic between 360k and 84k elements is determined to be 0.0636. This test demonstrating a

substantial decrease in error, and a sufficiency of 130k elements, which is lower than the average

175k elements used in the microstructural simulations. The computation time required for each of

the mesh sensitivity test simulations scaled approximately linearly with the number of elements,

to around 1.25 CPU-hours per 1000 elements for 48 Intel Xeon Gold 6248R parallel CPUs. For

32



SEMVE simulations up to 18.5% engineering strain, approximately 6.12 CPU-hours are required

per 1000 elements.

5. Validation Studies for the Porous Crystal Plasticity Model of the Equivalent

Crystal

Validation is conducted with the second and third of the material-load direction sets in Sec-

tion 2.3. As with the calibration, 5 SEMVEs are generated with different initial conditions,

and simulated for identical loading conditions. An example model and mesh for the second set

as-built material without heat treatment, loaded perpendicular to the build direction, is shown

in 11(a). The simulated mechanical responses are compared with those from experiments in fig-

ure 11(b) with reasonably good agreement. The third set of HIP-treated material with minimal

porosity that is loaded vertically, shares an almost identical parent β grain microstructure as the

first set used in the calibration. Correspondingly, the model uses the same parent β grains and

their meshes from the calibration example. However, the α statistics assigned to each β grain

are significantly different. The mechanical response of the third material-direction set is shown

in figure 11(c).
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Figure 11: (a) Mesh of a single instantiation of a SEMVE containing approximately 85 grains, where different
colors represent different parent β grains. (b) The engineering stress, engineering strain relationship between
the 5 as-built SEMVE instantiations loaded perpendicular to the build direction, and experimentally collected
data. (c) The engineering stress, engineering strain relationship between the 5 HIP treated SEMVE instantiations
loaded parallel to the build direction, and experimentally collected data.

The Φ metric in equation (29) is again used to quantify the error in stress-strain responses
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for the validation examples. The metric for all the 3 sets (as-built, as-built perpendicular and

HIP-treated) are given in table 4. For a more complete picture of the variation of individual

instantiations, the standard deviations are also included in the table. The standard deviation of

the Φ metric for the experimental and simulation data are given as:

Φ̂exp =

√√√√ 1

Nexp − 1

Nexp∑

i=1

(
Φ̄exp − Φ(σ̄exp(ǫ), σi

exp(ǫ))
)2

Φ̂sim =

√√√√ 1

Nsim − 1

Nsim∑

i=1

(
Φ̄sim − Φ(σ̄sim(ǫ), σi

sim(ǫ))
)2

The results generally show good agreement between the experiments and simulations for the

validation tests. The largest error is seen for the HIP-treated samples, possibly because of small

discrepancies in the Hall-Petch effect coefficient in equation (18) accounting α lath size effects,

as well as the localized plastic straining with necking in the HIP-treated microstructure as seen

in figure 12.

Set 1 (C) Set 2 (V) Set 3 (V)

Mean (Φ̄) SD (Φ̂) Mean (Φ̄) SD (Φ̂) Mean (Φ̄) SD (Φ̂)
Experimental Data 0.0067 0.0020 0.0128 0.0037 0.0040 0.0027
Simulation Data 0.0082 0.0044 0.0106 0.0080 0.0055 0.0044

Experiment-Simulation 0.0190 N/A 0.0279 N/A 0.0714 N/A

Table 4: The mean and standard deviation-based metrics, Φ̄exp, Φ̂exp,Φ̄sim,Φ̂exp, and Φ(σ̄exp(ǫ), σ̄sim(ǫ)) are
respectively calculated from experimental, simulation, and experimental-simulation data for the three material-
direction sets in the calibration and validation examples.

6. Investigation on Microstructural Stochasticity

FE simulations are conducted for 5 SEMVE instantiations of each of the three material-

direction sets, discussed in Section 2.3. These SEMVEs are generated with the statistical distri-

butions of the variant volume fraction, α lath size and shape, and β grain size and shape con-

forming to the experimental EBSD maps. However, the stochasticity in various microstructural

parameters in the SEMVEs that are not explicitly accounted for, result in significant variability

in the simulated deformation-related state variables. Understanding the drivers of these varia-
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(a) (b) (c)

(d) (e) (f)

Figure 12: Contour plots of (a) equivalent plastic strain, (b) Cauchy stress, and (c) porosity distribution in a
SEMVE of the as-built material loaded perpendicular to the build direction (set 2) at 18.5% strain; Contour plots
of (d) equivalent plastic strain, (e) Cauchy stress, and (f) porosity distribution in a SEMVE of the HIP-treated
material loaded parallel to the build direction (set 3) at 18.5% strain.

tions through the effect of microstructural parameters and deformation variables on the overall

material response, can provide useful insights on the deformation behavior of additively manu-

factured Ti-6Al-4V microstructures. State variables, viz. the Cauchy stress σij in the loading

direction, the equivalent plastic strain ǭp, and the local void volume fraction f , are studied in

this section.

6.1. Variation Attributable to the Statistical Moments of State Variables

For assessing the effect of statistical moments of the state variables, the difference in loading

direction engineering stresses at 18.5% engineering strain i∆ES is plotted as a function of the

mean and standard deviation of the stress, plastic strain, and void volume fraction in figure 13.
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For a given instantiation i, the difference in stresses is defined as:

i∆ES = σi − σ̄, where σ̄ =
1

Nsim

Nsim∑

i=1

σi (31)

Nsim = 5 for these plots. The mean and standard deviation are representative of the statistical

moments of distributions of the state variables. Simple linear regression curves are generated

for the data points in each plot and the corresponding coefficient of determination R2 values

are determined. The R2 value corresponds to the proportion of the variation in stress difference

with respect to the moments of the state variables. The higher R2 values in the plots of figures

figure 13(d,e,f) reveal that the variance of the distributions is much more predictive of the stress

patterns. In addition to R2, 95% confidence bounds are given for Pearson correlation coefficients.
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Figure 13: The stress difference plotted as a function of the mean and standard deviation respectively of the
(a,d) loading direction stress, (b,e) equivalent plastic strain, (c,f) void volume fraction, at 18.5% engineering
strain. The figures include 95% confidence intervals for the Pearson correlation coefficients, marked by LB and
UB respectively.

6.2. Variation Related to β Microstructure and Orientation

The parent β microstructures are strongly textured with elongated grains in the build direc-

tion. Determining the effect of individual microstructural instantiations is important to under-
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standing the drivers of micromechanical variability and overall material properties. Since the

vertical As-Built (AB) and HIP-treated (HT) microstructures have the same β grain structure

and β orientations, the effect of the β microstructure instantiations can be understood by deter-

mining if state variables with the same β microstructure statistics but different α lath statistics

are correlated. The effect of the β microstructure and orientations on the stress at 18.5% strain

is determined by plotting the stress difference i∆ES
HT vs. i∆ES

AB from equation (31), at 18.5% strain

in Figure 14(a). A sustained correlation across samples indicates that instantiations of parent

β grains have a significant effect on microstructural state variables. Furthermore, the plots of

the standard deviation of the loading direction stress and effective plastic strain in figure 14(b,c)

show their correlation. As there are little to no correlations between the instantiations, it is

likely that instantiations of the β microstructure play a very small role in the variation of state

variables.
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Figure 14: (a) Plot of the difference in mean stress for the as-built (AB) microstructure loaded parallel to the
build direction and the HIP-treated (HT) microstructure; Plot of the standard deviation of: (b) the Cauchy stress
distribution for the (AB) and (HT) microstructures, (c) the equivalent plastic strain distribution for the (AB)
and (HT) microstructures.
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7. Summary and Conclusions

Building from a foundation of microstructural characterization, mechanical testing, 3D syn-

thetic microstructures, and statistically equivalent microstructural volume elements (SEMVEs),

and image-based microstructural modeling, this paper develops an effective crystal plasticity

model with porosity evolution for additively manufactured Ti-6Al-4V alloys. The microstruc-

ture of these materials is characterized by a complex Widmanstätten morphology containing 12

α lath variants. The direct numerical simulation of microstructures with explicit representation

of the α lath morphology is computationally prohibitive. To overcome this major bottleneck, it

is necessary to create an effective crystal plasticity framework with a parametric representation

of the α lath morphology. This is achieved by identifying the crystallographic relationship of

the α laths in relation to the parent β grains from which they have nucleated, and developing

methods to incorporate a statistical representation of HCP α laths in β grains. The constitutive

model for β grains statistically account for the size, shape, orientation, and crystallography of

all 12 α lath variants. An important contribution is the integration of porosity evolution with

the crystal plasticity model.

Statistical characterization of α laths assumes a 3D ellipsoidal representation of the mor-

phology. This process first generates equivalent 2D ellipses from orthogonal EBSD scans of the

material microstructure Subsequently, the most probable 3D ellipsoids are obtained through the

use of stereological concepts that equate the 2D intersection of ellipsoids with 2D EBSD-based

maps. Statistical functions that characterize the distribution of observed 3D ellipsoids, and al-

low for their efficient and accurate statistical sampling are constructed thereafter. Subsequently,

a prior β reconstruction algorithm is executed, allowing for the identification of the crystallo-

graphic orientation of the parent β grains. The morphology of the β grains are characterized,

and used to generate statistically equivalent instantiations of the β grain microstructure using

the DREAM.3D code. For each β microstructure, the distributions characterizing the α lath

morphology are sampled. The combined statistics establish a statistically equivalent representa-

tive volume element or SEMVE that incorporates the physically relevant portions of the α laths
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in an explicit voxelized description of the much larger β microstructure.

The calibration and validation of the effective crystal plasticity model incorporate results

from three different sets of material-loading tests, viz. (i) as-built material loaded in the build

direction, (ii) as-built case loaded perpendicular to the build direction, and (iii) a HIP-treated

case loaded in the build direction. Set (i) is used for calibration, while the other two are used

in validation. The validation tests demonstrate reasonably good accuracy of the model for tests

corresponding to sets (ii) and (iii). The lower yield stress predicted for the HIP-treated materials

due to the larger α laths is in good agreement with experimental observations. An insightful

result of the model-based simulations infers that the standard deviation of the state variables

are more predictive of the overall response than the mean.

The material model developed in this study, when integrated with process models, is expected

to provide insights on optimizing the performance and qualification of additive manufacturing

processes. By linking this approach with models that can accurately predict α lath morphology,

β grain structure, and initial porosity from material processing conditions, superior material

response predictions can be obtained.
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Appendix A: Pseudo Code for Determining β Parent Grain from α Laths

Require: a set A of all segmented αi grains with unassigned parent β grain, and orientation βi

Require: a set B of all segmented αi grains that contain an assigned βi orientation
while A is not empty do

for Select the next alpha grain (αi) in A do

Initialize a set of α laths potentially sharing the same β grain C = ∅
for all neighbors j do

compute ∆q̄
ij
k∗

if min
l

(|∆(q̄BOR
l

,∆q̄
ij
k∗)|) < tolerance then

Add neighbor j to set C

compute trial beta orientations βm=j,l = q̄D−1

Sα
l
q̄j

end if

end for

if There are more than 3 unique variants in set C then

Calculate the parent β orientation: βi = min
βi

∑nNeighbors
m=1

(βi − βml)
2 ∗ Iml S.T. Iml ∈ Z[0, 1] ,

∑
6

l=1
Iml = 1 ∀m

add βi to set B, to define the β orientation of αi

remove αi from set A
for j in set C do

Set βi = βj

Add βj to set B
remove αj from set A

end for

else

for j neighbors C do

if j already belongs to a β grain: βj ∈ B then

add αi to the same β grain as its neighbor j

set βi = βj

Add βi to set B
remove αi from A

end if

end for

end if

end for

end while
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Appendix B: Calibrated Crystal Plasticity Parameters

Slip Family Equation
a b d

T C T C

Basal

w1 0.58 0.397 -0.114 78.703 38.985
w2 2.558 0.964 -0.781 105.892 60.664
w3 8.391
w4 6.821 25.356

Prismatic
< a > Pyramidal

w1 1.191 0.135 0.188 270253 53.251
w2 1.079 0.363 0.228 -0.404 0.744
w3 0.005
w4 -0.158 4.785

I+II
< c+ a > Pyramidal

w1 1.187 0.599 0.188 0.335 1.604
w2 2.479 0.013 0.154 28.641 12.312
w3 6.189
w4 2.370 1.743

Table 5: Porosity evolution parameters calibrated in [46]. Here (T) and (C) refer to tension and compression.

Parameter Basal Prismatic < a > Pyramidal I+II < c+ a > Pyramidal
θref 300◦K 300◦K 300◦K 300◦K

θ̂ref 400◦K 200◦K 200◦K 160◦K
ĝ 176.58 MPa 132.43 MPa 132.43 MPa 353 MPa
h0 150 MPa 150 MPa 150 MPa 150 MPa
g̃ 470 MPa 570 MPa 570 MPa 1550 MPa
c1 0.08 0.062 0.07 0.05
c2 1 1 1 1

Table 6: Slip system dependent parameters.

C11,C22 170.0 GPa
C33 204 GPa
C12 98 GPa

C23,C13 86 GPa
C44 36 GPa

C55,C66 51 GPa

Table 7: Components of the anisotropic elasticity tensor C, expressed in Voigt notation, calibrated in [45], with
all other components being 0.

The interaction matrices between slip systems are given by the following parameters: q̃αβ = 1,

χαβ
AF = 1, and χαβ

AP = 1 for all slip system pairs.
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Parameter Value
K .162 MPa

m0.5

G 48 GPa
Q 2.5−19 J
c 500 MPa
d 100

Table 8: Additional material constants.

Appendix C: Quaternion Notation

Relevant definitions are given below.

• Quaternion q̄ contains a scalar component q0 and a vector component q.

• Superscripts are used to define which grain or lath the quaternion represents.

• ∆q̄ab denotes the misorientation between two quaternions q̄a and q̄b.

• q̄measured denotes the as measured orientation.

• q̄ = q̄measured[S
HCP
k ] represents quaternions without the ”measured” subscript, which

denotes the quaternion after transformation to the fundamental zone.

• Subscript k refers to a quaternion after the kth symmetry operator has been applied to it.

• Asterisk k∗ denotes a particular symmetry operator that satisfies or minimizes some

operation, such as a transformation to the fundamental zone.
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